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Supplement

Analysis of metabolomic measurements in sets

Metabolite set enrichment analysis is an accessible and high-
throughput method to interpret metabolomic measurements
within a biological context. This analytical strategy is a founda-
tion of the widely-used platform, MetaboAnalyst [1]. We found
that MetaboAnalyst’s visual, step-wise interface on the web was
accessible, convenient, and easy to use. Users upload tables
of measurements for each metabolite in samples within each
experimental group. MetaboAnalyst processes these measure-
ments, compares experimental groups, and evaluates enrichment
of metabolites in functionally-relevant sets. MetaboAnalyst’s de-
fault set library includes ninety-nine sets of metabolites that par-
ticipate in common metabolic processes [1]. We included this
strategy in our retrospective analysis of metabolomic measure-
ments as a comparison to a current standard.
Metabolite set enrichment analysis in MetaboAnalyst [1],

demonstrated some limitations in the set enrichment strategy.
In this analysis, several sets ranked highly as hits even when
measurements were only available for a small fraction of their
total metabolites. In the most extreme example for Study 2, a set
of thirty-�ve metabolites had measurements for only one match-
ing metabolite (Table S4). This set still ranked in the top �ve hits
with a p-value less than 1E-06 (Table S4). Also in this analysis,
a few metabolites dominated multiple metabolite sets that were
top hits. For Studies 1-5, a single metabolite belonged to at least
three of the top �ve sets (Table S4). For Studies 1, 2, 4, and 5,
a single metabolite belonged to at least four of the top �ve sets
(Table S4). For Studies 1, 2, and 4, all �ve top sets included the
same metabolite (Table S4). This overlap between sets and the
tendency for a small count of metabolites to dominate top hits
risks over-interpretation of artifactual measurements and false
positives.

Analysis of metabolomicmeasurements in network clus-
ters

To detect clusters of measurements on ourmetabolic network, we
applied general functionality from Cytoscape [2]. Cytoscape [2]
required local installation, installation of the jActiveModules ap-
plication [3, 4], and familiarization with many settings for both
analyses and visualizations. Still, Cytoscape and jActiveModules
provided a speci�c and consistent protocol to search for prelim-
inary clusters of measurements. The jActiveModules algorithm
[3] detects enrichment of p-values across multiple nodes in clus-
ters across the network, and this combination is sensitive even
to weak di�erences in measurements.
This cluster enrichment strategy identi�ed individual genes,

transcripts, and proteins that were candidates for di�erential reg-
ulation between experimental conditions (Table S6). While we
used a general algorithm [3] to search for our initial clusters, a
more speci�c algorithmmight reasonably automate cluster detec-
tion and quantify con�dence in each cluster [5]. A more speci�c
algorithm might replicate our analysis by detecting clusters both
by enrichment of p-values and by prioritizing clusters with both
accumulation and depletion of analytes. Also, alternative search
strategies might excel at �nding broader, more systemic changes,
such as patterns of depletion in similar categories of metabolites,
or accumulation of many metabolites within a single compart-
ment.

Integration and analysis of metabolomic measurements with
our metabolic network discovered multiple unique clusters sug-
gestive of speci�c perturbations at individual reactions. We
matched analytes frommetabolomic studies to nodes for metabo-
lites in our metabolic network. To these nodes we integrated the
fold changes and p-values that we previously calculated to com-
pare the measurements of each metabolite between experimental
groups in each study (Table S3). We applied the jActiveModules
algorithm [3] in Cytoscape [2] to detect preliminary clusters with
metabolites and reactions of interest. As this search algorithm
and its clusters base on the general enrichment of p-values, we
integrated fold changes for an additional dimension in the search.
We searched these clusters for patterns of both accumulation and
depletion in metabolites that related closely by proximal reac-
tions (Figures 5, S1, S2, S3, S4; Table S5). These patterns impli-
cated individual reactions in di�erential regulation between ex-
perimental groups (Table S6). We identi�ed genes and proteins
for enzymes in these reactions and consulted Entrez Gene [6] and
UniProt [7] databases to contextualize their roles and regulation
in metabolism (Table S6).
Here we describe some of the more interesting clusters we

found. For the sake of brevity, we limit our discussion to clusters
from Studies 1, 2, and 5. We also discuss potential hypotheses and
interpretations of these clusters. Importantly, our exploratory
analyses of these studies are preliminary and are most suitable
for the generation of speculative hypotheses.

Study 1: Cancerous versus Normal Lung
Many types of cancer altermetabolic �ux to enhancemacromolec-
ular biosynthesis and thereby sustain cellular proliferation in tu-
mors [8, 9]. Tumors also often experience microenvironments
of hypoxia [8]. Study 1 (Table S3, Figure 5) collected samples of
early-stage adenocarcinoma tumors and adjacent nonmalignant
tissue from the lungs of thirty-nine human patients who were
either current or former smokers [10]. The publication of Study
1 emphasized several observations from metabolomic measure-
ments on cancerous lung relative to normal lung [10]. There was
evidence of enhanced synthesis of nucleotides and increased re-
sponse to reactive oxygen species along with surprisingly sparse
synthesis of polyamines [10].

Cluster 1: Glycerate kinase. Study 1, Cluster 1 (Figure 5C) suggests
that Glycerate kinase has di�erential activity in cancerous rel-
ative to normal lung, and this di�erence might partly sustain
the synthesis of serine. Relative to normal lung, cancerous
lung had accumulation of glyceric acid (p-value: 4.002E-03)
and depletion of 3-phosphoglyceric acid (p-value: 2.599E-03)
(Figure 5C, Table S5). 3-Phosphoglyceric acid is the product
of dephosphorylation of 1,3-diphosphoglyceric acid by the en-
zyme Phosphoglycerate kinase in the Glycolysis metabolic path-
way. 3-Phosphoglyceric acid is an allosteric inhibitor of 6-
Phosphogluconate dehydrogenase [11], which has a role in the
Pentose Phosphate metabolic pathway [12]. 3-Phosphoglyceric
acid also supplies the main route for synthesis of serine through
the enzyme 3-Phosphoglycerate dehydrogenase [13, 8]. Con-
versely, glyceric acid is a major product of the degradation of
serine [13]. Hence, the enzyme Glycerate kinase in this cluster oc-
cupies an intersection of dynamic metabolic processes that shift
to sustain cancerous metabolism [11, 12, 13, 14]. The original pub-
lication of this study acknowledged accumulation of metabolites
in the Pentose Phosphate Pathway but did not emphasize Glycer-
ate kinase as a candidate enzyme of interest [10]. The metabolite
set "Glycine and Serine Metabolism"most closely represents this
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cluster, and this set ranked 38th in metabolite set enrichment
analysis.
Bisphosphoglycerate mutase might also be more active in can-

cerous than normal lung to enhance oxygenation or mitigate
oxidative stress in tumors. 3-Phosphoglyceric acid is also the
product of dephosphorylation of 2,3-diphosphoglyceric acid by
Bisphosphoglycerate mutase [14]. Within red blood cells, 2,3-
diphosphoglyceric acid binds to Hemoglobin and regulates its
a�nity for and release of dioxygen [15]. Placental cells also pro-
duce and release 2,3-diphosphoglyceric acid to promote the ex-
change of dioxygen between maternal and fetal blood [15]. By in-
creasing activity of Bisphosphoglycerate mutase, cancerous lung
might divert some 1,3-diphosphoglyceric acid away from Gly-
colysis to produce 2,3-diphosphoglyceric acid and thereby par-
tially remedy the hypoxia in lung tumors [16]. Even minor varia-
tions in expression of Bisphosphoglycerate mutase seem to be
relevant [14], and a preliminary search of transcriptomic data
sets [17] demonstrated over-expression in pancreatic [18, 19]
and thyroid [20, 21] cancers. Furthermore, the Tumour suppres-
sor protein 53 (p53)-Induced Glycolysis and Apoptosis Regulator
(TIGAR) resists cancerous metabolism [22] in part by degrading
2,3-diphosphoglyceric acid [23]. In tumors, increasing activity
of Bisphosphoglycerate mutase and decreasing activity of TIGAR
might bene�t cancerous metabolism either by enhancing dioxy-
gen delivery or by mitigating oxidative stress [24].

Cluster 2: Spermidine synthase. Study 1, Cluster 2 (Figure 5D) sug-
gests that Spermidine synthase has di�erential activity in can-
cerous relative to normal lung, and this di�erence might allow
proximal ornithine to supply synthesis of proline [10]. Relative to
normal lung, cancerous lung had depletion of citrulline (p-value:
6.918E-04), ornithine (p-value: 1.011E-05), and spermidine (p-
value: 2.531E-03) (Figure 5D, Table S5). There was also accu-
mulation of 5’-methylthioadenosine (p-value: 2.242E-03) and
adenine (p-value: 3.919E-04) (Figure 5D, Table S5). Spermidine
synthase in this cluster converts putrescine to spermidine and
experiences inhibition from its product 5’-methylthioadenosine
[25]. Accumulation of both 5’-methylthioadenosine and its
degradation product adenine might indicate less activity in
Methylthioadenosine phosphorylase and purine salvage [10]. The
polyamines putrescine, spermidine, and spermine are abundant
stabilizers of cell growth and survival, and many types of can-
cerous cells enhance synthesis of polyamines to facilitate prolif-
eration [26, 8, 25]. The surprising depletion of spermidine in
cancerous lung might be due to inhibition of Spermidine syn-
thase by 5’-methylthioadenosine, and this decrease in activity
might also allow ornithine to supply proline synthesis rather than
polyamine synthesis [10]. Furthermore, in�ammation of lung tis-
sue, such as by smoking, enhances degradation of polyamines,
and this response itself can favor carcinogenesis [26, 25]. The
original publication of this study acknowledged accumulation of
5’-methylthioadenosine and depletion of both spermidine and
ornithine [10]. It also emphasized Methylthioadenosine phos-
phorylase as a candidate enzyme of interest, but it did not em-
phasize Spermidine synthase as a candidate enzyme of interest
[10]. The metabolite set "Spermidine and Spermine Biosynthe-
sis" most closely represents this cluster, and this set ranked 33rd
in metabolite set enrichment analysis.

Cluster 3: Uridine phosphorylase. Study 1, Cluster 3 (Figure 5E) sug-
gests that Uridine phosphorylase has di�erential activity in can-
cerous relative to normal lung, and this di�erence might support
the salvage of pyrimidines for proliferation. Relative to normal

lung, cancerous lung had depletion of uridine (p-value: 4.385E-
03) and accumulation of both uracil (p-value: 1.057E-02) and di-
hydrouracil (p-value: 1.449E-06) (Figure 5E, Table S5). Uridine
phosphorylase in this cluster interconverts uridine to uracil either
for pyrimidine degradation or salvage [27]. Cancer cells require
nucleotides for growth and proliferation [8, 9], and they must
obtain these either by synthesis or salvage. Inhibition of pyrimi-
dine synthesis by the uracil analogue 5-�uorouracil has been an
e�ective chemotherapeutic strategy for decades [28]. The origi-
nal publication of this study acknowledged accumulation of both
uracil and dihydrouracil and emphasized Dihydropyrimidine de-
hydrogenase as a candidate enzyme of interest, but it did not em-
phasize Uridine phosphorylase as a candidate enzyme of interest
[10]. The metabolite set "Pyrimidine Metabolism" most closely
represents this cluster, and this set ranked 40th in metabolite set
enrichment analysis.

Study 2: Visceral versus Subcutaneous Adipose
Visceral and subcutaneous white adipose tissues di�er both in
their roles in metabolism and in their contributions to morbid-
ity in obesity [29]. Visceral and subcutaneous fat depots develop
from distinct cellular lineages and grow in separate parts of the
body [30, 31, 29]. Whereas subcutaneous adipose grows between
the skin andmuscle, visceral adipose grows within the abdominal
cavity around internal organs. These fat depots also contribute
di�erently to the morbidity of obesity, with visceral adipose pro-
moting more in�ammation and also imparting greater risk for
metabolic syndrome, including diabetes, cardiovascular disease,
and even cancer [30, 31, 29]. Study 2 (Table S3, Figure S1) col-
lected samples of visceral and subcutaneous adipose tissues from
�fty-nine human patients during surgery for colon cancer [32].
The publication of Study 2 emphasized several observations from
integration of metabolomic and transcriptomic measurements on
visceral adipose relative to subcutaneous adipose [32]. These ob-
servations were consistent with a primary role of visceral adipose
as a metabolically-active endocrine organ and a primary role of
subcutaneous adipose as a metabolically-dormant storage organ
[32].

Cluster 1: Glucosidasealpha. Study 2, Cluster 1 (Figure S1C) suggests
that Glucosidase alpha has di�erential activity in visceral relative
to subcutaneous adipose, and this di�erence might be a selec-
tive therapeutic target in diabetes. Relative to subcutaneous adi-
pose, visceral adipose had depletion of glucose (p-value: 2.557E-
02) and accumulation of both maltotriose (p-value: 1.229E-03)
and maltose (p-value: 1.942E-06) (Figure S1C, Table S5). Glu-
cosidase alpha in this cluster degrades polysaccharides to release
glucose. Its activity is especially important to degrade complex
sugars in the intestine, and it also functions in liver and mus-
cle tissues to degrade glycogen and release glucose. A class of
anti-diabetic drugs inhibit intestinal Glucosidase alpha to mod-
erate the postprandial (after meal) absorption of glucose [31]. One
member of this class of inhibitors of Glucosidase alpha, Miglitol,
also moderates metabolic syndrome in obesity, partly by direct
in�uence on both brown and white adipose tissues [33]. Visceral
adipose absorbs more glucose than does subcutaneous adipose
[30], and if the activity of Glucosidase alpha di�ers between vis-
ceral and subcutaneous white adipose as this cluster suggests,
then Miglitol might also in�uence these depots selectively. The
original publication of this study acknowledged depletion of glu-
cose but did not emphasize Glucosidase alpha as a candidate
enzyme of interest [32]. The metabolite set "Glycolysis" most
closely represents this cluster, and this set ranked 10th inmetabo-
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lite set enrichment analysis.

Cluster 2: Branched-chain amino acid transaminase. Study 2, Clus-
ter 2 (Figure S1D) suggests that Branched-chain amino acid
(BCAA) transaminase has di�erential activity in visceral relative
to subcutaneous adipose, and this di�erence might contribute
to morbidity in obesity. Relative to subcutaneous adipose, vis-
ceral adipose had accumulation of all three BCAAs, leucine (p-
value: 5.915E-06), isoleucine (p-value: 5.240E-05), and valine
(p-value: 3.764E-04) (Figure S1D, Table S5). There was also
a slight depletion of ketoleucine (p-value: 6.385E-02), the ini-
tial product of leucine degradation (Figure S1D, Table S5). The
enzyme BCAA transaminase in this cluster catalyzes the �rst re-
action in degradation of the BCAAs. Metabolic syndrome in obe-
sity correlates with BCAA accumulation, partly attributable to a
decrease in the expression of enzymes for BCAA degradation in
visceral adipose tissue [34, 35, 36]. BCAAs in�uence the mas-
ter nutrient sensor, Mammalian Target of Rapamycin (mTOR),
which in turn regulates anabolism and catabolism of glucose and
lipids [37]. The original publication of this study acknowledged
accumulation of most amino acids but did not acknowledge ac-
cumulation of BCAAs speci�cally or emphasize BCAA transami-
nase as a candidate enzyme of interest [32]. The metabolite set
"Valine, Leucine and Isoleucine Degradation" most closely rep-
resents this cluster, and this set ranked 71st in metabolite set
enrichment analysis.

Cluster 3: Arginase. Study 2, Cluster 3 (Figure S1E) suggests that
Arginase has di�erential activity in visceral relative to subcuta-
neous adipose, and this di�erence might exacerbate in�amma-
tion, oxidative stress, and insulin resistance. Relative to sub-
cutaneous adipose, visceral adipose had depletion of urea (p-
value: 2.795E-02) and accumulation of both ornithine (p-value:
2.859E-05) and putrescine (p-value: 1.900E-02) (Figure S1E, Ta-
ble S5). Arginase in this cluster converts arginine to urea and or-
nithine in the last reaction of the Urea Cycle [38]. Urea is a waste
product to eliminate amines from the body, while ornithine sup-
plies synthesis of proline and polyamines for cellular prolifera-
tion [38]. Arginase’s activity also reduces the availability of argi-
nine for synthesis of nitric oxide by Nitric oxide synthase [38].
Via both polyamines and nitric oxide, Arginase correlates with
in�ammation and oxidative stress [38]. Inhibition of Arginase
ameliorates in�ammation and insulin resistance in diabetes and
obesity [38]. The original publication of this study did not empha-
size Arginase as a candidate enzyme of interest [32]. The metabo-
lite set "Urea Cycle" most closely represents this cluster, and this
set ranked 23rd in metabolite set enrichment analysis.

Study 5: Obese versus Post-Exercise Muscle
Obesity is a major detriment to public health, and exercise is a
life-style behavior that can mitigate this and other disease con-
ditions profoundly [39]. Study 5 (Table S3, Figure S4) collected
samples of muscle from ten obese human patients both before
and after three months of a mild exercise program [40]. We are
unaware of a publication on this study. Surprisingly, we found
clusters for Study 5, which had weak fold changes and p-values
for all but a few analytes.

Cluster 1: Malic enzyme. Study 5, Cluster 1 (Figure S4C) suggests
that Malic enzyme has di�erential activity in obese muscle rela-
tive to muscle after exercise, and this di�erence might balance
metabolism in response to slight hypoxia. Relative to muscle in
obese patients before exercise, muscle in obese patients after ex-

ercise had slight accumulation of fumaric acid (p-value: 5.084E-
02) and slight depletion of pyruvate (p-value: 5.513E-02) (Figure
S4C, Table S5). These metabolites both participate in reactions
with L-malic acid, which did not change appreciably (p-value:
8.337E-01). Malic enzyme in this cluster converts malic acid to
pyruvic acid, with various isozymes in the Cytosol and Mitochon-
drion. Malic enzyme cooperates with Pyruvate dehydrogenase
and the Malate-Aspartate Shuttle as a metabolic bridge between
Glycolysis in the Cytosol and the Citric Acid Cycle in the Mito-
chondrion. This bridge balances anapleurotic demands for ma-
terials and also balances reductive and oxidative nicotinamide
adenine dinucleotides for both anabolic and catabolic processes
[41, 42, 43]. Interestingly, fumaric acid allosterically activates
Malic enzyme in the Mitochondrion [44]. During exercise, mus-
cles might be slightly hypoxic, causing a stall in the Citric Acid
Cycle and an imbalance in reduced and oxidized nicotinamide ade-
nine dinucleotides. Malic enzyme might help to restore balance
[41, 42, 43]. The metabolite set "Citric Acid Cycle" most closely
represents this cluster, and this set ranked 42nd in metabolite
set enrichment analysis.

Cluster 2: Xanthine dehydrogenase. Study 5, Cluster 2 (Figure S4D)
suggests that Xanthine dehydrogenase has di�erential activity in
obese muscle relative to muscle after exercise, and this di�erence
might facilitate autophagy and moderate oxidative stress. Rela-
tive to muscle in obese patients before exercise, muscle in obese
patients after exercise had accumulation of uric acid (p-value:
3.688E-02) but no appreciable change in either xanthine (p-
value: 3.144E-01) or hypoxanthine (p-value: 1.777E-01) (Figure
S4D, Table S5). Xanthine dehydrogenase in this cluster catalyzes
multiple reactions in the degradation of purines, of which uric
acid is the terminal product [45]. In skeletal muscle, exercise
enhances both the production of reactive oxygen species and the
rate of autophagy, and both of these metabolic responses are im-
portant for muscle’s adaptation to exercise [46, 47]. Xanthine
dehydrogenase is likely to have a role in autophagy, and uric acid
has complex contributions to oxidative stress [45]. The metabo-
lite set "Purine Metabolism" most closely represents this cluster,
and this set ranked 66th in metabolite set enrichment analysis.

Cluster 3: Histidine decarboxylase. Study 5, Cluster 3 (Figure S4E)
suggests that Histidine decarboxylase has di�erential activity in
obese muscle relative to muscle after exercise, and this di�erence
might facilitate signalling for muscle recovery. Relative to mus-
cle in obese patients before exercise, muscle in obese patients af-
ter exercise had depletion of histidine (p-value: 4.395E-02) but
no appreciable change in 1-methylhistamine (p-value: 1.348E-
01) (Figure S4E, Table S5). Histamine did not change appre-
ciably. Histidine decarboxylase catalyzes synthesis of histamine
from histidine, and Histamine N-methyltransferase catalyzes its
degradation to 1-methylhistamine [48]. This cluster might indi-
cate an enhancement in synthesis of histamine and its release
from the cell. In skeletal muscle, exercise promotes the syn-
thesis of histamine, where it acts as a local paracrine signal to
promote blood circulation, delivery of glucose, and in�ammation
[48]. The metabolite set "Histidine Metabolism" most closely
represents this cluster, and this set ranked 62nd in metabolite
set enrichment analysis.
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Table 1. De�nition of metabolite hubs.

Name Non-Compartmental Degree Compartmental Degree

Proton 1494 1871
Water 1070 1240
Dioxygen 270 300
Phosphate 189 290
Diphosphate 126 183
Carbon dioxide 123 160
Sulfate 109 131
Hydrogen peroxide 107 132
Ammonium 68 84
Sul�te 7 24
Sodium 0 20
Hydrogen carbonate 0 0
Hydroxide 0 0

Name Non-Compartmental Degree Compartmental Degree

Coenzyme-A 473 593
Nicotinamide adenine dinucleotide (NAD1+) 349 421
Nicotinamide adenine dinucleotide reduced (NADH) 345 405
Nicotinamide adenine dinucleotide phosphate (NADP1+) 284 316
Nicotinamide adenine dinucleotide phosphate reduced (NADPH) 282 314
Acetyl coenzyme-A 169 215
(R)-Carnitine 149 276
Flavin adenine dinucleotide (FAD2+) 100 112
Flavin adenine dinucleotide reduced (FADH2) 98 106
Adenosine 5’-triphosphate (ATP) 245 392
Adenosine 5’-diphosphate (ADP) 167 280
Uridine 5’-diphosphate (UDP) 164 191
Adenosine 5’-monophosphate (AMP) 94 137
Cytidine 5’-monophosphate (CMP) 59 83
Adenosine 3’,5’-bisphosphate (ABP) 55 57
Guanosine 5’-diphosphate (GDP) 52 75

Names and degrees of metabolite hubs for exclusion frommetabolic networks. The degree of a metabolite’s node is the count of links to reactions in which it participates
as reactant or product. A metabolite’s non-compartmental degree is the degree of its node in the non-compartmental network. A metabolite’s compartmental degree
is the cumulative degree across all nodes for its instances in the compartmental network. Metabolites on top are in Category 1. Metabolites on bottom are in Category 2.
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Table 2. De�nition of network metrics.

Name De�nition

Order: Order is the count of nodes in a network. Bipartite networks have distinct orders for each of their two sets of
nodes.

Size: Size is the count of links between nodes in a network. Bipartite networks only have links between nodes of
di�erent types.

Density: Density is proportional to a network’s size normalized to the maximal size possible in a network of
comparable order. Networks with greater density have more interconnections, more links per nodes.

Centrality: Individual nodes within a network have centralities. Degree centrality relates to a node’s close-range
in�uence, and it is proportional to the count of links that connect to the node. Betweenness centrality relates
to a node’s long-range in�uence. It is proportional to the count of shortest paths between all pairs of other
nodes in a network that pass through the focal node. Together, degree and betweenness centralities are
useful to rank or prioritize nodes in a network [49].

Centralization: Centralization is the extent to which a network has a single, central node of maximal centrality, surrounded
by all other nodes of minimal centrality. The star network de�nes maximal centralization.

Cluster coe�cient: Each of a network’s nodes has a cluster coe�cient to describe the local density of connections proximal to
individual nodes.

Mean cluster coe�cient: A network has a mean cluster coe�cient across all of its nodes.
Mean shortest path: A network has a mean length of shortest paths between all pairs of nodes. This mean path length indicates

the e�ciency of communication, or the pervasiveness of signals.
Small-world coe�cient: Like random networks, small-world networks have small mean path lengths that scale proportionately to

the natural logarithm of their orders [50]. However, unlike random networks, small-world networks have
large mean cluster coe�cients [50]. The sigma small-world coe�cient [50] measures the small-world
character of a network by comparing both mean cluster coe�cient and mean path length to random bipartite
networks with identical orders and sizes. A value of the sigma coe�cient greater than 1 suggests that a
network is small-world.

Assortativity: Assortativity is the tendency of nodes within a network to connect to other nodes that are similar by some
attribute. Degree assortativity describes the tendency for nodes to connect to other nodes with similar
degrees. The assortativity coe�cient is a type of correlation coe�cient.

Common network metrics applied to describe custom metabolic networks. Special considerations are necessary to adapt these metrics to bipartite networks [51].

Table 3. Curation of metabolomic measurements.

Study Tissue Group,
Dividend

Group,
Divisor

Pairs Analytes Metabolites Project Study Reference

1 Lung Tumor Normal True 177 119
(67.23%)

PR000305 ST000390 [10, 52]

2 Adipose Viscera Subcutane True 132 91
(68.94%)

PR000058 ST000061 [32, 53]

3 Liver Ischemia Normal False 151 108
(71.52%)

PR000322 ST000412 [54, 55]

4 Liver Steatosis Normal False 151 108
(71.52%)

PR000322 ST000412 [54, 55]

5 Muscle Exercise Obese True 125 73
(58.40%)

PR000599 ST000842 [40]

All studies use tissues from people of species Homo sapiens. Fold change calculations represent quotients of measurements from dividend (numerator) groups to divisor
(denominator) groups. Information from all studies is accessible on Metabolomics Workbench [56] in speci�c records for each project and study.
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Table 4. Metabolite Set Enrichment Analysis.

Study 1 Name P-Value Total Hits Metabolites

- Lysine Degradation 3.961E-06 30 6 L-Glutamic acid, L-Lysine, Oxoglutaric acid, Aminoadipic
acid, L-Pipecolic acid, FAD

- Beta-Alanine Metabolism 8.478E-05 34 8 Beta-Alanine, Dihydrouracil, L-Glutamic acid, L-Histidine,
L-Aspartic acid, Oxoglutaric acid, Uracil, FAD

- Nicotinate and Nicotinamide
Metabolism

8.569E-05 37 6 Adenosine monophosphate, L-Glutamic acid, L-Glutamine,
FAD, Niacinamide, Phosphoric acid

- Cysteine Metabolism 8.840E-05 26 4 Adenosine monophosphate, L-Glutamic acid, Oxoglutaric
acid, Phosphoric acid

- Warburg E�ect 8.955E-05 58 12 Citric acid, Fructose 6-phosphate, Fumaric acid, L-Glutamic
acid, L-Malic acid, Oxoglutaric acid, Succinic acid,
L-Glutamine, 3-Phosphoglyceric acid, FAD, Glucose
6-phosphate, Phosphoric acid

Study 2 Name P-Value Total Hits Metabolites

- Fatty Acid Biosynthesis 8.694E-07 35 6 Palmitic acid, 3-Hydroxybutyric acid, Caprylic acid, Capric
acid, Dodecanoic acid, Myristic acid

- Fatty Acid Elongation in
Mitochondria

9.679E-07 35 1 Palmitic acid

- Fatty Acid Metabolism 9.691E-07 43 3 Adenosine monophosphate, Palmitic acid, Pyrophosphate
- Steroid Biosynthesis 9.696E-07 48 2 Palmitic acid, Pyrophosphate
- Bile Acid Biosynthesis 1.054E-06 65 4 Glycine, Palmitic acid, Pyrophosphate, Taurine

Study 3 Name P-Value Total Hits Metabolites

- Gluconeogenesis 1.030E-30 35 6 Oxoglutaric acid, Beta-D-Glucose, Malic acid,
3-Phosphoglyceric acid, Glucose 6-phosphate, Phosphoric
acid

- Trehalose Degradation 1.032E-30 11 1 Beta-D-Glucose
- Glycolysis 1.034E-30 25 4 Beta-D-Glucose, 3-Phosphoglyceric acid, Glucose

6-phosphate, Phosphoric acid
- Nucleotide Sugars Metabolism 1.293E-11 20 2 Uridine diphosphate glucuronic acid, Glucose 6-phosphate
- Starch and Sucrose Metabolism 1.404E-11 31 6 Sucrose, D-Fructose, 3-Phosphoglyceric acid, Uridine

diphosphate glucuronic acid, Glucose 6-phosphate,
Beta-D-Fructose 6-phosphate

Study 4 Name P-Value Total Hits Metabolites

- Butyrate Metabolism 1.830E-12 19 2 Adenosine monophosphate, Succinic acid
- Mitochondrial Beta-Oxidation of

Medium Chain Saturated Fatty
Acids

1.217E-10 27 2 Adenosine monophosphate, Dodecanoic acid

- Ribo�avin Metabolism 1.226E-10 20 1 Adenosine monophosphate
- Thiamine Metabolism 1.226E-10 9 1 Adenosine monophosphate
- Ethanol Degradation 1.226E-10 19 1 Adenosine monophosphate

Study 5 Name P-Value Total Hits Metabolites

- Spermidine and Spermine
Biosynthesis

1.430E-02 18 1 L-Methionine

- Methionine Metabolism 1.430E-02 43 3 L-Methionine, NAD, S-Adenosylhomocysteine
- Betaine Metabolism 1.430E-02 21 3 L-Methionine, NAD, S-Adenosylhomocysteine
- Glycine and Serine Metabolism 1.988E-02 59 7 Creatine, Glyceric acid, Oxoglutaric acid, Pyruvic acid,

L-Methionine, NAD, S-Adenosylhomocysteine
- Phospholipid Biosynthesis 4.631E-02 29 3 NAD, DG(16:0/16:0/0:0), LysoPC(16:0)

Metabolite set enrichment analysis in MetaboAnalyst [1]. Top 5 ranking sets for each study ranked by p-value. Column "Total" reports the cardinality or total count of
metabolites in each set. Column "Hits" reports the count of metabolites from the set with measurements.
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Table 5. Cluster Metabolites.

Study Cluster Analyte Log-2 Fold P-Value

1 1 Maltotriose 4.978E-01 1.229E-03
1 1 D-Glucose -7.350E-01 2.557E-02
1 1 D-Maltose 1.679E+00 1.942E-06
1 2 L-Leucine 8.110E-01 5.915E-06
1 2 Ketoleucine -1.997E-01 6.385E-02
1 2 L-Isoleucine 5.929E-01 5.240E-05
1 2 L-Valine 5.378E-01 3.764E-04
1 3 Citrulline 1.910E-01 1.960E-02
1 3 Ornithine 5.311E-01 2.859E-05
1 3 Putrescine 4.528E-01 1.900E-02
1 3 Urea -2.626E-01 2.795E-02
1 3 Spermidine 1.773E-01 8.122E-02

2 1 Glyceric acid 3.996E-01 4.002E-03
2 1 3-Phosphoglyceric acid -1.057E+00 2.599E-03
2 2 Citrulline -4.962E-01 6.918E-04
2 2 Ornithine -8.687E-01 1.011E-05
2 2 Putrescine 9.096E-02 4.030E-01
2 2 Spermidine -5.751E-01 2.531E-03
2 2 5’-Methylthioadenosine 7.321E-01 2.242E-03
2 2 Adenine 4.932E-01 3.919E-04
2 3 Dihydrouracil 1.122E+00 1.449E-06
2 3 Uracil 5.588E-01 1.057E-02
2 3 Uridine -8.510E-01 4.385E-03

3 1 Uridine diphosphate-N-acetylglucosamine -7.965E-01 4.822E-05
3 1 Uridine 5’-monophosphate 9.399E-01 6.016E-03
3 2 Guanosine 1.626E+00 1.066E-06
3 2 Xanthine -3.705E-01 2.079E-02
3 2 Hypoxanthine 1.420E+00 2.893E-04
3 2 Xanthosine -1.045E+00 3.631E-08
3 2 Uric acid -3.008E+00 1.205E-25
3 3 Glyceric acid 1.389E+00 4.517E-04
3 3 Glycerol -1.741E+00 4.139E-10
3 3 Glycerol 3-phosphate -2.083E-01 2.727E-01

4 1 L-Serine 7.594E-01 2.077E-02
4 1 L-Alanine -5.580E-01 4.062E-03
4 1 Glycine -6.363E-01 9.534E-03
4 2 Glyceric acid 2.284E+00 3.472E-03
4 2 Glycerol -1.671E+00 5.360E-05
4 2 Glycerol 3-phosphate -2.033E+00 6.463E-09
4 3 Guanosine 1.745E+00 1.674E-03
4 3 Xanthine -8.043E-01 9.214E-04
4 3 Hypoxanthine 9.819E-01 1.233E-03
4 3 Xanthosine -9.010E-01 2.006E-05
4 3 Uric acid -1.974E+00 1.574E-09

5 1 Fumaric acid 7.357E-01 5.084E-02
5 1 L-Malic acid -8.227E-02 8.337E-01
5 1 Pyruvic acid -7.935E-01 5.513E-02
5 2 Hypoxanthine -3.013E-01 1.777E-01
5 2 Xanthine -1.462E-01 3.144E-01
5 2 Uric acid 2.562E+00 3.688E-02
5 3 L-Histidine -3.593E-01 4.395E-02
5 3 Histamine -3.444E-02 7.294E-01
5 3 1-Methylhistamine 2.873E-01 1.348E-01
5 3 S-Adenosylhomocysteine 4.790E-01 6.171E-02

Di�erential abundance in metabolomic measurements of metabolites in or relevant to clusters.
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Table 6. Cluster Reactions.

Study 1 Cluster Reaction Gene Identi�ers Protein Identi�ers

- 1 Glucosidase alpha 2548, 2595 P10253, Q8TET4
- 2 Branched chain amino acid transaminase 586, 587
- 3 Ornithine carbamoyltransferase 5009 P00480
- 3 Ornithine decarboxylase 4953 P11926
- 3 Arginase 383, 384 P05089, P78540
- 3 Agmatinase 79814 Q9BSE5
- 3 Spermidine synthase 6723 P19623

Study 2 Cluster Reaction Gene Identi�ers Protein Identi�ers

- 1 Glycerate kinase 132158 Q8IVS8
- 1 Phosphoglycerate mutase 669, 5223, 5224 P07738
- 2 Ornithine carbamoyltransferase 5009 P00480
- 2 Ornithine decarboxylase 4953 P11926
- 2 Spermidine synthase 6723 P19623
- 2 Methylthioadenosine phosphorylase 4507 Q13126
- 3 Dihydropyrimidine dehydrogenase 1806
- 3 Uridine phosphorylase 7378, 151531

Study 3 Cluster Reaction Gene Identi�ers Protein Identi�ers

- 1 Dolichyl-phosphate
N-acetyl-glucosamine-phospho-transferase

1798

- 2 Purine nucleoside phosphorylase 4860
- 2 Guanine deaminase 9615
- 2 Xanthine dehydrogenase 7498 P47989
- 3 Aldehyde dehydrogenase 217, 219, 223, 224, 501
- 3 Aldo-keto reductase 231, 10327
- 3 Glycerol kinase 2710, 2712

Study 4 Cluster Reaction Gene Identi�ers Protein Identi�ers

- 1 Aminotransferase 189
- 2 Aldehyde dehydrogenase 217, 219, 223, 224, 501
- 2 Aldo-keto reductase 231, 10327
- 2 Glycerol kinase 2710, 2712
- 3 Purine nucleoside phosphorylase 4860
- 3 Guanine deaminase 9615
- 3 Xanthine dehydrogenase 7498 P47989

Study 5 Cluster Reaction Gene Identi�ers Protein Identi�ers

- 1 Fumarate hydratase 2271 P07954
- 1 Malic enzyme 4199, 4200, 10873 P48163, P23368, Q16798
- 2 Xanthine dehydrogenase 7498 P47989
- 3 Histidine decarboxylase 3067
- 3 Histamine N-methyltransferase 3176

Reactions in clusters. Bold font denotes reactions of special interest in each cluster. Gene identi�ers match records in Entrez Gene [6]. Protein identi�ers match records
in UniProt [7].
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Figure 1. Integration and analysis of metabolomic measurements on metabolic networks, Study 2. Metabolomic Study 2 (Table 3) compared the abundances of 132
metabolites between visceral and subcutaneous adipose tissues. Clusters of enrichment in fold changes are detectable by integrating measurements within the non-
compartmental network without hubs (Figure 3D). A. Volcano plot of p-values and fold changes in metabolites. B. Scale for color representation of fold changes on
nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C-E. Clusters in metabolic network are detectable by
enrichment of p-values and fold changes. Metabolite nodes in clusters represent fold changes by color �ll, and they represent p-value by border thickness (p-value <
0.05).
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Figure 2. Integration and analysis of metabolomic measurements on metabolic networks, Study 3. Metabolomic Study 3 (Table 3) compared the abundances of
151 metabolites between ischemic and normal liver tissues. Clusters of enrichment in fold changes are detectable by integrating measurements within the non-
compartmental network without hubs (Figure 3D). A. Volcano plot of p-values and fold changes in metabolites. B. Scale for color representation of fold changes
on nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C-E. Clusters in metabolic network are detectable by
enrichment of p-values and fold changes. Metabolite nodes in clusters represent fold changes by color �ll, and they represent p-value by border thickness (p-value <
0.05).
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Figure 3. Integration and analysis of metabolomic measurements on metabolic networks, Study 4. Metabolomic Study 4 (Table 3) compared the abundances of
151 metabolites between steatotic and normal liver tissues. Clusters of enrichment in fold changes are detectable by integrating measurements within the non-
compartmental network without hubs (Figure 3D). A. Volcano plot of p-values and fold changes in metabolites. B. Scale for color representation of fold changes
on nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C-E. Clusters in metabolic network are detectable by
enrichment of p-values and fold changes. Metabolite nodes in clusters represent fold changes by color �ll, and they represent p-value by border thickness (p-value <
0.05).
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Figure 4. Integration and analysis of metabolomic measurements on metabolic networks, Study 5. Metabolomic Study 5 (Table 3) compared the abundances of 125
metabolites between muscle tissues before and after persons with obesity participated in a three-month exercise program. Clusters of enrichment in fold changes are
detectable by integrating measurements within the non-compartmental network without hubs (Figure 3D). A. Volcano plot of p-values and fold changes in metabolites.
B. Scale for color representation of fold changes on nodes in clusters. Extremes of color scale represent the minimal and maximal fold changes in the entire study. C-E.
Clusters in metabolic network are detectable by enrichment of p-values and fold changes. Metabolite nodes in clusters represent fold changes by color �ll, and they
represent p-value by border thickness (p-value < 0.05).
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